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Abstract. Support Vector Machine (SVM) is one of the most popu-
lar classifiers in pattern recognition, which aims to find a hyperplane
that can separate two classes of samples with the maximal margin. As
a result, traditional SVM usually more focuses on the scatter between
classes, but neglects the different data distributions within classes which
are also vital for an optimal classifier in different real-world problems.
Recently, using as much structure information hidden in a given dataset
as possible to help improve the generalization ability of a classifier has
yielded a class of effective large margin classifiers, typically as Struc-
tured Large Margin Machine (SLMM). SLMM is generally derived by
optimizing a corresponding objective function using SOCP, and thus in
contrast to SVM developed from optimizing a QP problem, it, though
more effective in classification performance, has the following shortcom-
ings: 1) large time complexity; 2) lack of sparsity of solution, and 3)
poor scalability to the size of the dataset. In this paper, still following
the above line of the research, we develop a novel algorithm, termed as
Structural Support Vector Machine (SSVM), by directly embedding the
structural information into the SVM objective function rather than using
as the constraints into SLMM, in this way, we achieve: 1) to overcome
the above three shortcomings; 2) empirically better than or compara-
ble generalization to SLMM, and 3) theoretically and empirically better
generalization than SVM.

Keywords: Supportvectormachine,Structural information,Rademacher
complexity, Pattern recognition.

1 Introduction

In the past decade, large margin machines have become a hot issue of research
in machine learning. Support Vector Machine (SVM)[1], as the most famous one
among them, is derived from statistical learning theory[2] and achieves a great
success in pattern recognition.
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Given a training set {xi, yi}n
i=1 ∈ Rm × {±1}, the basic objective of SVM

is to learn a classifier f = wT x + b which can maximize the margin between
classes:

min
w,b

1
2

‖ w ‖2

s.t. yi(wT xi + b) ≥ 1, i = 1, · · · , n (1)

If we focus on the constraints in (1), we can immediately capture the following
insight about SVM which is easily generalized to the soft margin version:

Theorem 1. SVM constrains the scatter between classes as wT Sbw ≥ 4, where
Sb = (μ1 − μ2)(μ1 − μ2)T , μi is the mean of class i(i = 1, 2).

Proof. Without loss of generalization, we assume that the class one has the
class label yi = 1, and the other class has yj = −1. Then we reformulate the
constraints as wT xi + b ≥ 1, where xi belongs to class one, and wT xj + b ≤ −1,
where xj belongs to class two. Let the numbers of the samples in the two classes
are respectively n1 and n2. Then we have 1

n1

∑n1
i=1(w

T xi + b) = (wT μ1 + b) ≥ 1
and − 1

n2

∑n2
j=1(w

T xj + b) = −(wT μ2 + b) ≥ 1. Adding the two inequalities,
we obtain wT (μ1 − μ2) ≥ 2. Squaring the inequality, we further have wT (μ1 −
μ2)(μ1 − μ2)T w ≥ 4, i.e. wT Sbw ≥ 4. �

Consequently, following the above theorem, it is obvious that SVM actually gives a
natural lower bound to the scatter between classes, just according with its original
motivation that pays more attention to the maximization of margin. However, it
discards the prior data distribution information within classes which is also vital
for classification. In fact, corresponding to different real-world problems, different
classes may have different underlying data structures. It requires that the classifier
should adjust the discriminant boundaries to fit the structures which are vital for
classification, especially for the generalization capacity of the classifier. However,
the traditional SVM does not differentiate the structures, and the derived decision
hyperplane lies unbiasedly right in the middle of the support vectors[3, 4], which
may lead to a nonoptimal classifier in the real-world problems.

Recently, some new large margin machines have been presented to give more
concerns to the structural information than SVM. They provide a novel view
to design a classifier, that the classifier should be sensitive to the structure
of the data distribution, and assume that the data contains clusters. Minimax
Probability Machine (MPM)[5] and Maxi-Min Margin Machine (M4)[3] stress
the global structure of the two classes and apply two ellipsoids, i.e. two clusters,
to characterize the classes distributions respectively. By using the Mahalanobis
distance which combines the mean and covariance of the ellipsoids, they integrate
the global structural information into the large margin machines. However, only
emphasis on the global structure of the classes is too coarse. In many real-
world problems, samples within classes more likely have different distributions.
Therefore, Structured Large Margin Machine (SLMM)[4] is proposed to firstly
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apply some clustering methods to capture the underlying structures in each class.
As a result, SLMM uses several ellipsoids whose number is equal to the number
of the clusters to enclose the training data, rather than only two ellipsoids in
M4 respectively corresponding to each class. The optimization problem in soft
margin SLMM can be formulated as (2)[4], which introduces the covariance
matrices in each cluster into the constraints:

max ρ − C

|P |+|N |∑

l=1

ξl

s.t. (wT xl + b) ≥ | Pi |
MaxP

ρ
√

wT ΣPiw − ξl, xl ∈ Pi,

− (wT xl + b) ≥ | Nj |
MaxN

ρ
√

wT ΣNjw − ξl, xl ∈ Nj ,

wT r = 1, ξl ≥ 0 (2)

where ξl is the penalty for violating the constraints. C is a regularization pa-
rameter that makes a trade-off between the margin and the penalties incurred.
Pi denotes the ith cluster in class one, i = 1, · · · , CP , and Nj denotes the j th
cluster in class two, j = 1, · · · , CN . CP and CN are the numbers of the clusters
in the two classes respectively. r is a constant vector to limit the scale of the
weight w.

By the simple algebraic deduction, MPM, M4 even SVM can all be viewed as
the special cases of SLMM. And SLMM also achieves better classification per-
formance among these popular large margin machines experimentally. However,
SLMM has much larger time complexity than SVM. Its optimization problems
should be solved by SOCP, which handles relatively difficultly in real applica-
tions. And the corresponding solution loses the sparsity as in SVM derived from
optimizing a QP problem. Consequently, it has poor scalability to the size of
the dataset and can not easily be generalized to large-scale or multi-class prob-
lems. Furthermore, in the kernel version, SLMM should kernelize the covariance
matrix in each cluster within the constraints respectively, which undoubtedly
increases extra computational complexity.

In this paper, we present a novel classification algorithm that provides a gen-
eral way to incorporate the structural information into the learning framework
of the traditional SVM. We call our method SSVM, which stands for Structural
Support Vector Machine. Inspired by the SLMM, SSVM also firstly exploits the
intrinsic structures of samples within classes by some unsupervised clustering
methods, but then directly introduces the data distributions of the clusters in
different classes into the traditional optimization function of SVM rather than
in the constraints. The contributions of SSVM can be described as follows:

� SSVM naturally integrates the prior structural information within classes
into SVM, without destroying the classical framework of SVM. And the
corresponding optimization problem can be solved by the QP just similarly to
SVM. Consequently, SSVM can overcome the above shortcomings of SLMM.
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� SSVM empirically has comparable or better generalization to SLMM, since
it considers the separability between classes and the compactness within
classes simultaneously. Though SLMM can capture the structural informa-
tion within classes by some clustering algorithms, it also more emphasizes
the separability between classes due to the characteristics of the traditional
large margin machines, which more likely does not sufficiently apply the
prior information to some extent.

� SSVM can be theoretically proved that it has the lower Rademacher complex-
ity than SVM, in the sense that it has better generalization capacity, rather
than only validating generalization performance empirically in SLMM. This
further justifies that the introduction of the data distribution within classes
into the classifier design is essential for better recognition.

The rest of the paper is organized as follows. Section 2 presents the proposed
Structural Support Vector Machine, and also discusses the kernelization of SSVM.
In Section 3, the theoretical analysis of the generalization capacity is deduced.
Section 4 gives the experimental results. Some conclusions are drawn in Section 5.

2 Structural Support Vector Machine (SSVM)

Following the line of the research in the SLMM, SSVM also has two steps:
clustering and learning. It firstly adopts clustering techniques to capture the data
distribution within classes, and then minimizes the compactness in each cluster,
which leads to further maximizing the margin in the sense of incorporating the
data structures simultaneously.

Many clustering methods, such as K-means, nearest neighbor clustering and
fuzzy clustering, can be applied in the first clustering step. After the clustering,
the structural information is introduced into the objective function by the covari-
ance matrices of the clusters. So the clusters should be compact and spherical for
the computation. Following SLMM, here we use the Ward’s linkage clustering in
SSVM, which is one of the hierarchical clustering techniques. During the cluster-
ing, the Ward’s linkage between clusters to be merged increases as the number
of clusters decreases[4]. We can draw a curve to represent this process. Through
finding the knee point, i.e. the point of maximum curvature in the curve, the
number of clusters can be determined automatically. Furthermore, the Ward’s
linkage clustering is also applicable in the kernel space.

After clustering, we obtain the c1 and c2 clusters respectively in the two
classes. We denote the clusters in the classes as P1, · · · , Pc1 and N1, · · · , Nc2 .
From Theorem 1, we have proved that SVM gives a natural lower bound to the
separability between classes by the constraints. So here we pay more attention
to the compactness within classes, that is, the clusters which cover the different
structural information in different classes. We aim to maximize the margin and
simultaneously minimize the compactness. Accordingly, the SSVM model in the
soft margin version can be formulated as:

min
w,b

1
2

‖ w ‖2 +
λ

2
wT Σw + C

n∑

i=1

ξi
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s.t. yi(wT xi + b) ≥ 1 − ξi, ξi ≥ 0, i = 1, · · · , n (3)

where Σ = ΣP1 + · · · + ΣPc1
+ ΣN1 + · · · + ΣNc2

, ΣPi and ΣNj are the co-
variance matrices corresponding to the ith and j th clusters in the two classes,
i = 1, · · · , c1, j = 1, · · · , c2. λ is the parameter that regulates the relative impor-
tance of the structural information within the clusters, λ ≥ 0.

Compared to SVM, SSVM inherits the advantages of SLMM that incorporates
the data distribution information in a local way, that considers the covariance
matrices of the clusters in each class which contain the trend of data occurrence
in statistics[4]. However, different from SLMM, SSVM directly introduces the
prior information into the objective function rather than the constraints. There-
fore, SSVM can follow the same techniques as SVM to solve the optimization
problem, which mitigates the large computational complexity in SLMM. And
the algorithm can efficiently converge to the global optimum which also holds
the sparsity and has better scalability to the size of the datasets. Moreover,
through minimizing the compactness of the clusters, SSVM more likely further
maximizes the margin between classes, which may lead to comparable or better
classification and generalization performance than SLMM. We will address these
in more details in the following sections.

By incorporating the constraints into the objective function, we can rewrite
(3) as a primal Lagrangian. Then, we transform the primal into the dual problem
following the same steps as SVM:

max
α

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyj [xT
i (I + λΣ)−1xj ]

s.t. 0 ≤ αi ≤ C, i = 1, · · · , n
n∑

i=1

αiyi = 0 (4)

Eq. (4) is a typical convex optimization problem. Using the same QP tech-
niques as SVM, we can obtain the solution . Then the derived classifier function
can be formulated as follows, which is used to predict the class labels for future
unseen samples x:

f(x) = sgn[
n∑

i=1

αiyixT
i (I + λΣ)−1x + b] (5)

It is noteworthy that SSVM boils down to the same solution framework of
SVM except adding a regularization parameter λ. When λ = 0, SSVM will
degenerate to the traditional SVM. Thus SVM actually can be viewed as a
special version case of SSVM.

We can also apply the kernel trick in SSVM in order to further improve the
classification performance in complex pattern recognition problems. Further-
more, compared to SLMM which has to kernelize each cluster covariance matrix
respectively, SSVM can perform complex kernelization through kernelizing the
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covariance matrix sum of all the cluster covariance matrices which makes it
simpler and more effective.

Assume that the nonlinear mapping function is Φ : Rm → H, where H is
a Hilbert space which has high dimension. Then the optimization function of
SSVM in the kernel space can be described as:

max
α

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyj [Φ(xi)T (I + λΣΦ)−1Φ(xj)]

s.t. 0 ≤ αi ≤ C, i = 1, · · · , n
n∑

i=1

αiyi = 0 (6)

Due to the high dimension (even infinite), Φ usually can not be explicitly
formulated. A solution to this problem is to express all computations in terms of
dot products, called as the kernel trick[1]. The kernel function k : Rm×Rm → R,
k(xi,xj) = Φ(xi)T Φ(xj) derives the corresponding kernel matrix K ∈ Rn×n,
Kij = k(xi,xj), which is so-called Gram matrix.

Consequently, we aim to transform (6) into the form of dot products for
adopting the kernel trick. For each covariance matrix in the kernel space, we
have

ΣΦ
i =

1
| CΦ

i |
∑

Φ(xj)∈CΦ
i

[Φ(xj) − μΦ
i ][Φ(xj) − μΦ

i ]T

=
1

| CΦ
i |T

Φ
i TΦT

i − TΦ
i

→
1 |CΦ

i |
→
1

T

|CΦ
i | TΦT

i (7)

where CΦ
i denotes the clusters without differentiating the different classes, i ∈

[1, c1 +c2]. And TΦ
i is a subset of the sample matrix, which is combined with the

samples belonging to the cluster i in the kernel space.
→
1 |CΦ

i | denotes a | CΦ
i |-

dimensional vector with all the components equal to 1/ | CΦ
i |.

Then we obtain

ΣΦ =
c1+c2∑

i=1

ΣΦ
i =

c1+c2∑

i=1

1
| CΦ

i |T
Φ
i TΦT

i − TΦ
i

→
1 |CΦ

i |
→
1

T

|CΦ
i | T

ΦT

i � PΦΨPΦT

(8)

where PΦ = [TΦ
1 , · · · ,TΦ

c1+c2
],

Ψ =

⎛

⎜
⎜
⎜
⎜
⎝

1
|CΦ

1 |I|CΦ
1 |−

→
1 |CΦ

1 |
→
1

T

|CΦ
1 |

. . .
1

|CΦ
c1+c2

|I|CΦ
c1+c2

|−
→
1 |CΦ

c1+c2
|
→
1

T

|CΦ
c1+c2

|

⎞

⎟
⎟
⎟
⎟
⎠

and I|CΦ
i | is a | CΦ

i | × | CΦ
i | identity matrix, i ∈ [1, c1 + c2].
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By the Woodbury’s formula

(A + UBV)−1 = A−1 − A−1UB(B + BVA−1UB)−1BVA−1 (9)

So

(I+λΣΦ)−1 = (I+λPΦΨPΦT

)−1 = I−λPΦΨ(Ψ +λΨPΦT

PΦΨ)−1ΨPΦT

(10)

By substituting (10) into the optimization function (6), we have the kernel
form of the dual problem (6) as follows:

max
α

n∑

i=1

αi − 1
2

n∑

i=1

n∑

j=1

αiαjyiyj[Kij − λK̃
T

i Ψ(Ψ + λΨK̂Ψ)−1ΨK̃j ]

s.t. 0 ≤ αi ≤ C, i = 1, · · · , n
n∑

i=1

αiyi = 0 (11)

where K̃i represents the ith column in the kernel Gram matrix K̃, K̃ij =
k(xCt

i ,xj), xCt

i is the sample that is realigned corresponding to the sequence
of the clusters, t = 1, · · · , c1 + c2. And K̂ is the kernel Gram matrix, K̂ij =
k(xCt

i ,xCt

j ).

3 Rademacher Complexity

In this section, we will discuss the generalization capacity of SSVM in theory.
Different from SLMM which only validates its better generalization performance
than SVM empirically by experiments, we will indeed prove that the introduction
of the structural information within classes can improve the generalization bound
compared to SVM. Here we adopt the Rademacher complexity measure[6] and
show the new error bound is tighter.

In the traditional kernel machines, we are accustomed to using VC-dimension
[2] to estimate the generalization error bound of a classifier. However, the bound
involves a fixed complexity penalty which does not depend on the training data,
thus can not be universally effective[6]. Recently, Rademacher complexity, as an
alternative notion, is presented to evaluate the complexity of a classifier instead
of the classical VC-dimension[7]. And for the kernel machines, we can obtain an
upper bound to the Rademacher complexity:

Theorem 2 [6]. If k : X×X → R is a kernel, and S = {x1, · · · ,xn} is a sample
of points from X, then the empirical Rademacher complexity of the classifier FB

satisfies

R̂n(FB) ≤ 2B

n

√
√
√
√

n∑

i=1

k(xi,xj) =
2B

n

√
tr(K) (12)

where B is the bound of the weights w in the classifier.
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Following Theorem 2, we then give the complexity analysis of SSVM compared
to SVM.

Theorem 3 (Complexity Analysis). The upper bound of the empirical Rad-
emacher complexity R̂SSV M(f) in SSVM is at most the upper bound of R̂SV M (f)
in SVM, that is, tr(KSSV M ) ≤ tr(KSV M ).

Due to limited space, here we omit the proof. The theorem states that there is an
advantage to considering the separability between classes and the compactness
within classes simultaneously, i.e. the structural information within the clusters,
to further reduce the Rademacher complexity of the classifiers being considered.
Intuitively, the minimization of the compactness in the clusters more likely leads
to the larger margin compared to SVM, which means better generalization per-
formance in practice. Theorem 3 just provides us a theoretical interpretation for
the intuition.

4 Experiments

To evaluate the proposed Structural Support Vector Machine (SSVM) algo-
rithm, we investigate its classification accuracies and computational efficien-
cies in several real-world UCI datasets. Since Structured Large Margin Machine
(SLMM)[4] has been shown to be more effective than many relatively mod-
ern learning machines, such as Minimax Probability Machine (MPM)[5], Maxi-
Min Margin Machine (M4)[3] and Radial Basis Function Networks (RBFN) in
terms of classification accuracies, in this experiment we just compare SSVM
with SLMM and SVM. For each dataset, we divide the samples into two non-
overlapping training and testing sets, and each set contains almost half of sam-
ples in each class respectively. This process is repeated ten times to generate ten
independent runs for each dataset and then the average results are reported.

Due to the relatively better performance of the kernel version, here we uni-
formly compare the algorithms in the kernel and soft margin cases. The width
parameter σ in the Gaussian kernel, and the regularization parameters C and λ
are selected from the set {2−10, 2−9, · · · , 29, 210} by cross-validation. We apply
Sequential Minimal Optimization (SMO) algorithm to solve the QP problems in
SSVM and SVM, and SeDuMi program to solve the SOCP problem in SLMM.

The experimental results are listed in Table 1. In each block in the table,
the first row is the training accuracy and variance. The second row denotes
the testing accuracy and variance. And the third one is the average training
time in the ten runs after the selection of the parameters. We can make several
interesting observations from these results:

� SSVM is consistently superior to SVM in the overall datasets both in the
training and testing accuracies, owing to the proper consideration of data
distribution information. Furthermore, SSVM also outperforms SLMM in
almost all the datasets except in Pima, because that SSVM simultaneously
captures the separability between classes and the compactness within classes
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Table 1. The training and testing accuracies (%), variances and average training time
(sec.) compared between SSVM and SLMM, SVM in the UCI datasets

SSVM SLMM SVM
96.25 ± 0.01 95.31∗ ±0.01 95.63∗ ±0.01

Automobile 91.14 ± 0.00 88.63∗ ±0.03 88.48∗ ±0.01
0.44 3.20 0.36

77.36 ± 0.10 76.03∗ ±0.15 75.68∗ ±0.08
Bupa 76.18 ± 0.04 73.52∗ ±0.12 73.06∗ ±0.06

1.23 18.77 0.89
84.10 ± 0.01 82.59∗ ±0.01 79.87∗ ±0.00

Hepatitis 83.25 ± 0.00 79.82∗ ±0.03 79.61∗ ±0.01
0.58 3.75 0.42

98.46 ± 0.00 96.97∗ ±0.03 96.80∗ ±0.02
Ionosphere 97.52 ± 0.01 95.63∗ ±0.05 95.11∗ ±0.02

1.17 5.71 0.79
79.65 ±0.02 80.63 ± 0.05 76.04∗ ±0.01

Pima 78.63 ±0.01 79.46 ± 0.02 77.08∗ ±0.02
12.53 72.14 7.67

95.58 ± 0.02 95.27 ±0.01 86.54∗ ±0.15
Sonar 87.60 ± 0.07 86.21∗ ±0.11 85.00∗ ±0.13

0.61 3.34 0.50
98.81 ± 0.02 95.61∗ ±0.10 98.47 ±0.02

Water 98.69 ± 0.01 95.49∗ ±0.12 90.51∗ ±0.09
0.39 1.56 0.29

95.96 ± 0.00 94.89∗ ±0.05 92.54∗ ±0.01
Wdbc 95.72 ± 0.00 94.57∗ ±0.03 94.25∗ ±0.01

3.58 43.65 2.77
′∗′ Denotes that the difference between SSVM and the other two methods is significant
at 5% significance level, i.e., t-value > 1.7341.

rather than only emphasizing the separability in SLMM which may miss
some useful classification information. And the gap of the classification ac-
curacies between the two algorithms in Pima is less than one percent.

� The training and testing accuracies of SSVM are basically comparable in the
datasets, which further provides us an experimental validation for better
generalization capacity than SVM, according with the theoretical analysis in
Theorem 3. And the variances show the good stability of the SSVM algorithm.

� We also report the average training time of the three algorithms. SSVM is
slower than SVM due to the clustering pre-processing. However, it is much
quicker than SLMM, which adopts the SOCP as the optimizor rather than
the QP in the SSVM. Consequently, in view of the efficiency as well as
classification performance, SSVM is more likely the best option among the
three algorithms.

� In order to find out whether SSVM is significantly better than SLMM and
SVM, we perform the t -test on the classification results of the ten runs
to calculate the statistical significance of SSVM. The null hypothesis H0
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demonstrates that there is no significant difference between the mean number
of patterns correctly classified by SSVM and the other two methods. If the
hypothesis H0 of each dataset is rejected at the 5% significance level, i.e., the
t -test value is more than 1.7341, the corresponding results in Table 1 will be
denoted ′∗′. Consequently, as shown in Table 1, it can be clearly found that
SSVM possesses significantly superior classification performance compared
with the other two methods in almost all datasets, especially according to the
testing accuracies. And in Pima, there seems to be no significant difference
between SSVM and SLMM, i.e. t -value < 1.7341. This just accords with our
conclusions.

5 Conclusion

In this paper, we propose a novel large margin machine called as Structural
Support Vector Machine (SSVM). Following the research of SLMM, SSVM also
firstly captures the data distribution information in the classes by some cluster-
ing strategies. Due to the insights about the constraints in the traditional SVM,
we further introduce the compactness within classes according to the structural
information into the learning framework of SVM. The new optimization problem
can be solved following the same QP as SVM, rather than the SOCP in the re-
cent related algorithms such as MPM, M4 and SLMM. Consequently, SSVM not
only has much lower time complexity but also holds the sparsity of the solution.
Furthermore, we validate that SSVM has better generalization capacity than
SVM both in theory and practice. And it also has better than or comparable
classification performance to these related algorithms.

Throughout the paper, we discuss SSVM in the binary classification prob-
lems. However, SSVM can be easily generalized to the multi-class problems by
using the vector labeled outputs techniques, and to large-scale problems through
combining with the techniques of minimum enclosing ball[8]. These issues will
be our future research.
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